In a normal machine learning problem, we get an observation for which we predict an outcome, irrespective of the time factor. In some of these cases, future outcomes are being predicted, but that treats all the past observations equally, with little or no significant difference.
However, a time series dataset is entirely different. Time series tasks add a “time dimension”, and also have an explicit order of dependence between the observations. To put it simply: A time series is a sequence of observations taken sequentially in time.
Continue reading “Time Series Forecasting in Machine Learning”